Probability Calculations

The following examples demonstrate how to calculate the value of the cumulative distribution function at (or the probability to the left of a agiven numbe

- Norma(0,1) Distribution

$\begin{array}{lllll}\text { phorm } \\ 111 \\ 0.02275013 & 0.15865525 & 0.50000000 & 0.84134475 & 0.97724987\end{array}$
Binomial(n, p) Distribution

- Poisson (λ) Distribution :

Exercise : Calculate the following probabilities
Probability that a normal random variable with mean 22 and variance 2
(i) lies between 16.2 and 27.5

is greater than 291 -prorm $(29,22$, sde5 $)$
$[1] 0.08075666$
is less than 17 prorm (17,22, sd=5)
i1 10.1586553
(iv) is less than 15 or greater than 25 prorm (15,22, sd=5 $)+1$-pnorm $(25,22$, sde5 $)$
[1] 0.3550098

Probability that in 60 tosses of a fair coin the head comes up
(i) 20,25 or 30 times

(ii) $\begin{aligned} & {[1] 0.1512435} \\ & \text { less than } 20 \text { times }\end{aligned}$

[1] 0.0031088
between 20 and
$[11) 0.5445444$
A random variable X has Poisson distribution with mean 7 . Find the probability that
$\underset{\substack{\mathrm{X} \\>\\ \text { popois }(5,7)}}{\mathrm{X} \text { les than } 5 \text { less or equal is: }}$

(ii) | sponan is 4,71 |
| :---: |
| 110.1729916 |

$\underset{>}{\mathrm{X} \text { is graeter than } 10(\text { strictly })}$
$\begin{aligned} & \text { (iii) } \\ & X \text { is between } 4 \text { and } 16>\text { ppois }(16,7) \text {-ppois }(3,7) \\ & {[1] } \\ & 0.9172764 \\ & \text { Quantiles }\end{aligned}$

Quantiles

fowing examples show how to common the quantiles of some Qut

Normal(0,1) Distribution

p) Distribution

- Poisson (λ) Distribution :

Random Variable generatio

he following examples illustrate how to generate random samples from some of the well-known probability distributions.

```
- Normal ( }\mu,\mp@subsup{\sigma}{}{2})\mathrm{ Distribution :
    The first sample is from N(0,1) distribution and the next one from N(5,1) distribution.
```

```
    *)
    If you would like to see how the distribution of the sample points looks like
    >n<- rnorm(1000, mean=5,sd=1)
    - Binomial( n,p) Distribution :
        < < <- rbinom(20, size=5, prob=.2)
        isson(\lambda) Distribution
```


Density Plots

.

Hotion the

Discrete Probabiilities For a discrete random variable, you can use the probability mass to find $P(X=k)$

Note the distinction between the continuous (Normal) and the discrete (Binomial) distrubtions.

```
Exercise Plot the probability mass functions
```

Exercise: Recreate the probabilities that Professor Holmes did in class (Bin $(5,4)$) YYou can do it in 1 command!] How would you get the expected counts?
Q-Q_plot
R has two different functions that can be used for generating a Q -Q plot. Use the function qquorm for ploting sample quantiles against theoretical Example:

par (mfrow=c(2,2))

Note: Systematic departure of points from the Q-Q line (the red straight line in the plots) would indicate some type of departure from normality for the
sample points.
Example:

